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CHAPTER 1. General introduction 

1.1 Introduction 

There are both theoretical and experimental reasons for studying the influence of geometry 

and boundary conditions on the efficiency of diffusion-reaction processes. First, one would 

like to isolate effects that are independent of the boundaries of the domain in which the 

diffusion-reaction processes take place, and for this, periodic boundary conditions are usually 

imposed. Over the last several years, however, there has been an avalanche of experimental 

work published on the study of diffusion-reaction processes in micro-heterogeneous medial (mi-

celles, clays, zeolites, etc.) , with systems of finite extent (nanosystems) showing non-classical 

behavior (i.e., departures from "mean field" behavior) . Therefore, in Chapter 2 we have also 

examined in tandem with periodic boundary conditions, systems subject to confining boundary 

conditions. Specifically, in adopting confining boundary conditions, one imposes the condition 

that if a diffusing particle attempts to exit the lattice from a given boundary site, it is simply 

reset at that boundary site. 

Recently, the modeling of diffusion-controlled reactions on lattices has attracted renewed 

interest due to synergies with some research areas like e.g. heterogeneous catalysis [2, 3, 4] , 

trapping problems [5] , spin models [6] , game theory [7] , population dynamics [8] or biological 

problems [9] . An issue common to these systems is the important role played by the coexistence 

of different intrinsic time scales, the lattice characteristics (size and dimensionality) and many-

body effects. The interplay of these ingredients may strongly affect the efficiency with which 

statistical processes such as front propagation on catalytic substrates, the spread of an infection, 

kink propagation in magnetic systems, or exciton trapping in photosynthetic cells take place. 

1 For a review see ref. [1] . 
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In order to obtain analytical insight for such systems, it is often necessary to make simplifying 

assumptions which nevertheless preserve their main generic features. 

In this spirit, a prototypical diffusion-reaction system consists of two interacting walkers 

performing nearest neighbor jumps on a lattice [10] . The walkers are assumed to react with 

each other whenever they meet at the same lattice site or attempt to exchange positions. Each 

of such "encounters" results in instantaneous reaction, the process therefore being diffusion-

controlled. Regardless of the particular outcome of the reaction, a measure for its efficiency 

will be clearly given by the mean encounter time of both walkers. 

In a pioneering work, Montroll investigated a simplified version of the problem in which one 

of the walkers is stationary, thereby playing the role of a fixed trap [11] . In a recent article [12J , 

Montroll's results have been extended with the help of a Markovian method to account for the 

possibility of simultaneous displacement of the walkers. In Chapter 3, the problem is further 

extended to the case in which the motion of the walkers consists of a random sequence of two 

different events: at each tick of the clock, a synchronous event takes place with probability p, 

i.e., both walkers hop simultaneously to randomly chosen nearest neighbor sites. Alternatively, 

an asynchronous event takes place with probability 1 — p, i.e. one of the walkers performs a 

nearest .neighbor jump while the other remains immobile. Thus, the parameter p interpolates 

between the one walker plus trap case studied by Montroll (p = 0) and the case of two 

simultaneously moving walkers (p = 1) . A question we shall investigate here concerns the 

influence of the degree of synchronicity p of the walkers and the size N of the lattice in which 

they are embedded upon the reaction's efficiency. 

Our model may be of interest in several contexts. One can e.g. easily accommodate it 

to allow for events in which both walkers remain immobile in the original reference frame. 

Thus, three qualitative different joint events become possible for the two-walker system, which 

can e.g. be interpreted as resulting from a combination of two internal states for each of the 

walkers, namely a diffusing and an immobile state. Such two-state random walks [13, 14, 15J 

are frequently used to model chromatographic [16] or electrophoretic separation processes, in 

which the propagation of charged particles in an external field may be occasionally stopped by 
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entanglement with the molecules of the substrate. Such systems, along with hopping models 

for transport and recombination of carriers in solids [17, 18, 19], might provide additional 

motivation for considering a generalized version of the random walk. 

A different approach suggests to regard the fluctuations in the diffusivity of the walkers as 

a result of random fluctuations of lattice sites switching between a conducting and a stopping 

state, whereby the translational invariance of the lattice is preserved on average. An alternative 

formulation of the problem in terms of fluctuating dichotomous barriers between sites also 

seems possible [20]. Such models for dynamic random media axe relevant for the description of 

several physiochemical processes like e.g. ligand diffusion in proteins [21] or proton migration 

in water [22]. 

On the other hand, if one goes back to the original picture of two dissimilar walkers A and 

B, the model may be regarded as a schematized starting point for describing the dynamics 

of exciton absorption in biological light-harvesting systems [23]. In photosynthetic cells, a 

photon is absorbed by the pigment molecules (e.g. chlorophyll) in the cell and may give rise 

to an excited energy state. The exciton hops by resonant energy transfer through a network 

or lattice of 200-500 pigment molecules (antenna system) and can be eventually trapped at 

a reaction center [24], which is usually considered to be immobile within the time scale for 

trapping (a few hundred picoseconds). The exciton energy is then used to trigger a series 

of redox processes in the chain of chemical reactions leading to the production of sugars and 

carbohydrates. Thus, one of the time-limiting steps for the production of oxygen is precisely 

the absorption of the exciton by the trapping center. If we allow for a certain mobility of the 

reaction center (thereby generalizing Montroll's approach for exciton trapping), we can identify 

the latter with a slowly hopping walker, say the A walker, while the propagating exciton would 

play the role of the B walker. As long as the hopping rate of the A walker remains small, 

the situation may be identified with the almost purely asynchronous case (small p); this is 

normally the case in in vivo light-harvesting systems. 

The class of problems we studied can be viewed as Maxkov processes. (A thorough treat-
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ment can be found in refs. [25, 28, 29].) Let 

~'n(?J1, tl; y2~ t2; . . . ; yn , tn) (1.1) 

be the probability of the system to be in state yn at time to where t takes on only positive 

discrete values. Consider the case where yn is also a function of a random variable and we 

know that all the random variables which contribute to each state yn are independent of each 

other. Now let 

Plan-1(yn~ tnl yn-1, to—li yn-2i to-2; • • • ; yl, tl) 

be the conditional probability that the system in state yn_1 at time tn_1 (and thus all previ-

ous states yl , . .. , yn_1 at times tl , . . . , tn_1 which are specified in the right hand side of the 

argument list) will make a transition to state y~ at time tn. Markov theory can be explained 

quite succinctly using joint probability functions as 

Plan-1(yn~ tn~y~- 1~ to—li yn-2~ to-2i . . . ; yl , tl) = Pi~l(yn~ tnl yn-1~ to-1)~ (1.3) 

that is to say that the transition probability of moving from one state to another does not 

depend on any previous state except the most recent state. Markov theory essentially erases 

the memory from the particular system in question. This means that we can write 

P2~yl,ti~y2~t2) = Pi~i~y2~t2~yi~ti)Pi~yi,ti) 1.4) 

and can build up the whole Markov chain starting from the above expression. This is a 

particularly useful mathematical expression of a Markov process where it is clear to see that 

the probability of being in a particular state at a particular time depends only on the previous 

state and the transition probability from the old state into the new state. Considering the 

systems under study as finite Markov processes allows us to use the Markov method in the 

solution of the relevant quantities. 

Once we have defined our system as a Markov process, our starting point is the stochastic 

master equation. In this work the focus will be on the solutions or analysis of the stochastic 

master equation where the probability distribution function [p(t)] governing the fate of a dif-
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fusing paxticle on a Euclidean or fractal lattice is given by the following evolution equation2

[26, 27] 
dPz (t) _ 

N 

(fit — ~ Gti~ PJ ~t~ 
~_ 1 

Specifically, pi (t) is the probability of the particle being at site i at time t, with 

p2 (t=0)=birn• 

GZ~ is the transition rate of the probability to the site i from a neighboring site j . The overall 

G matrix is linked to the N x N Markov transition probability matrix3 P with elements p23

via the relation 

Gij — [Sij pij]v~ (i.7) 

where v~ is the valency of site j and p2~ is the probability that the diffusing particle, conditional 

on being at site i at time t, will be at site j in the next displacement until terminating its walk 

(eventually) at one or more partially or completely absorbing traps.. The p2~ reflect all of the 

constraints influencing the diffusional motion of the reactant. Consider a simple case where 

the particle is undergoing an unbiased, nearest-neighbor random walk. Then 

pii = 0, and pz~ = 1 /v~ for i # j (1.8) 

where v~ is the valency (number of nearest-neighbor sites) of site j. 

The solutions to Eq. (1.5) are of the form 

Pi (t) _ ~ aik exp(—~kt~ (1.9) 
k 

where the ak axe the eigenvalues of G. It can be shown that the mean walklength (n) of 

the Markovian theory is related to the smallest eigenvalue ~1 of the above stochastic master 

equation via the relation 

(n) =vii 1. (l.lo) 

In Chapter 2 we use the Maxkov method analytically and solve for (n) utilizing Monte Carlo 

simulations. In Chapter 3 the Markov method is used along with Monte Carlo simulations as 

ZA similar but abbreviated form of Eq. (1.5) in matrix notation is commonly given as p(t) = wp(t) in ref. 
[25]. 

3 See Appendix 
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well. A method which relies upon the solution of an inhomogeneous difference equation is 

also explored in Chapter 3 for the case where the reactants are situated on a ld lattice. An 

explicit example of the difference equation approach and the Markov approach is provided in 

the Appendix for the case of the 1WT with periodic boundary conditions in dimension d = 1. 

In this work we will study reactions which occur between two reactive species. The principal 

focus will be on two kinetic schemes. The first is 

A+T —> S+T (1.11) 

in which T denotes a site occupied by an immobile target molecule (trap). The other scheme 

is 

A + A --> 2S (1.12) 

where A denotes a site occupied by a diffusing reactant molecule and S a free site. In this 

work, we shall refer to the scheme described by Eq. (1.12) as the "two-walker (2W) case", 

while the kinetics described by Eq. (l.11) will be termed "one-walker plus trap (1WT) case". 

The mean walklength of a diffusing species before encountering a co-reactant is a natural 

measure of the time scale of adiffusion-reaction process. Let (n)1 be the mean walklength 

before the irreversible reaction takes place in the 1WT case (Eq. (1.11)). Let (n)2 be the 

corresponding quantity for the 2W case (Eq. (1.12)). The quantities (n)1,2 are obtained by 

averaging over statistical realizations comprising all different initial configurations of both 

reaction partners. The smaller the value of (n)1,2, the higher the efficiency of the reaction. 

1.2 Thesis organization 

This thesis is comprised of two papers which are in press in Physica A. The work in 

Chapter 2 was performed .principally by me with help from E. Abad. The writing and revising 

was performed by all four co-authors. The work in Chapter 3 was performed jointly by E. 

Abad and myself, with Abad doing the analytic work while the Monte Carlo simulations were 

performed by me. Again, the writing and revisions were performed by all four co-authors. 
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Chapter 2 examines how topology, dimensionality, and boundary conditions impact the 

efficiency of reaction considering two particle reactions. Two general classes of reactions are 

studied. Chapter 3 examines more closely synchronization effects where the two reactant 

mobility condition is even looser in the sense that at each time step there is a certain probability 

p that both walkers will move by one lattice space and a probability 1—p that only one walker 

will move and the other one will remain stationery. The problem is solved exactly in one 

dimension and in higher dimensions (2d and 3d) the problem is analyzed via Monte Carlo 

simulations. 
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CHAPTER 2. Efficiency of encounter-controlled reaction between diffusing 

reactants in a finite lattice: topology and boundary effects 

A paper published in Physica Al 

Jonathan L. Bentz2 , John J. Kozak3, E. Abad4,G. Nicolis5

Abstract 

The role of dimensionality (Euclidean versus fractal) , spatial extent, boundary effects and 

system topology on the efficiency of diffusion-reaction processes involving two simultaneously-

diffusing reactants is analyzed. We present numerically-exact values for the mean time to 

reaction, as gauged by the mean walklength before reactive encounter, obtained via application 

of the theory of finite Markov processes, and via Monte Carlo simulation. As a general rule;

we conclude that for sufficiently large systems, the efficiency of diffusion-reaction processes 

involving two synchronously diffusing reactants (two-walker case) relative to processes in which 

one reactant of a pair is anchored at some point in the reaction space (one walker plus trap 

case) is higher, and is enhanced the lower the dimensionality of the system. This differential 

efficiency becomes larger with increasing system size and, for periodic systems, its asymptotic 

value may depend on the parity of the lattice. Imposing confining boundaries on the system 

enhances the differential efficiency relative to the periodic case, while decreasing the absolute 

efficiencies of both two-walker and one walker plus trap processes. Analytic arguments are 

1 Physica A 326/ 1-2 (2003) 55-68 
2Graduate Student, Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111 
3Professor, Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111 
4Researcher, Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, C. P. 

231, Bd. Du Triomphe, 1050 Brussels, Belgium 
5Professor, Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, C. P. 231, 

Bd. Du Triomphe, 1050 Brussels, Belgium 
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presented to provide a rationale for the results obtained. The insight afforded by the analysis 

to the design of heterogeneous catalyst systems is also discussed. 

2.1 Introduction 

The influence of the interplay between spatial extent and system dimensionality on the 

reaction efficiency when reactants are undergoing random displacements on a finite lattice, 

with an irreversible reaction occurring on first encounter has attracted considerable interest 

over the last years [1, 2, 3, 4] . Whereas there is a vast literature dealing with the situation 

where one of the two reaction partners is anchored at some point in the reaction space [2, 3] , 

a novel feature addressed more recently is when both reaction partners are allowed to diffuse 

simultaneously [l, 4] . This corresponds to the kinetic scheme 

where A denotes a site occupied by a diffusing reactant molecule and S a free site, as opposed 

to the scheme 

in which T denotes a site occupied by an immobile target molecule (trap) . In this paper, 

we shall refer to the scheme described by Eq. (2.1) as the "two-walker (2W) case" , while the 

kinetics described by Eq. (2.2) will be termed "one-walker plus. trap (1WT) case" . 

In Refs. [1, 4], particular attention was focused on processes taking place on square-planar 

lattices subject to various boundary conditions. It was found that significant differences in 

reaction efficiency resulted depending on whether one or both reactants were diffusing. The 

objective of the present study is to inquire to what extent these results are generic and, if so, 

how they depend on the geometry of the support. The latter will be characterized, in turn, 

by the size, the embedding dimension, the intrinsic dimensionality, and by the topological 

invariants. Among these, for two-dimensional objects (surfaces) the Euler characteristic x = 

F — E -~ V where F is the number of faces, E the number of edges and V the number of vertices 

is especially significant. In each case, the role of the boundary conditions will also be assessed. 
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The mean walklength of a diffusing species before encountering a coreactant is a natural 

measure of the time scale of adiffusion-reaction process. Let (n)1 be the mean walklength 

before the irreversible reaction takes place in the 1WT case (Eq. (2.2)). Let (n)2 be the 

corresponding quantity for the 2W case (Eq. (2.1)). The quantities (n)1,2 are obtained by 

averaging over statistical realizations comprising all different initial configurations of both 

reaction partners. The smaller the value of (n)1,2, the higher the efficiency of the reaction. 

A point that will recur frequently in the following is that the reaction in the 2W case can 

occur via two different channels. In the first scenaxio, the two reaction partners happen to 

occupy adjacent sites on the lattice, and (with a certain probability) in their next, mutual 

displacement they undergo a collision. In the second channel, an intervening lattice site sep-

axates the two reactants and, in their subsequent motion (again, with a certain probability), 

both attempt to occupy that same (vacant) lattice site. As we shall see, one or both of these 

reaction channels can pertain, depending on the choice of boundary conditions and the parity 

of the total number of lattice sites N. Since both (n) 1  and (n}2 depend on the characteristics 

of the lattice and on the boundary conditions, it will therefore be more appropriate to choose 

as a measure of the relative efficiency of the 2W process the ratio I' _ (n) 1  l (n) 2. 

There are both theoretical and experimental reasons for studying the influence of geometry 

and boundary conditions on the efficiency of diffusion-reaction processes. First, one would like 

to isolate effects that are independent of the boundaries of the domain in which the diffusion-

reaction processes take place, and for this, periodic boundaxy conditions are usually imposed. 

Over the last several yeaxs, however, there has been an avalanche of experimental work pub-

lished on the study of diffusion-reaction processes in microheterogeneous media [5] (micelles, 

clays, zeolites, etc.), with systems of finite extent (nanosystems) showing non-classical behav-

ior (i.e., departures from "mean field" behavior). Therefore, in the present study we have also 

examined in tandem with periodic boundary conditions, systems subject to confining boundary 

conditions. Specifically, in adopting confining boundary conditions, one imposes the condition 

that if a diffusing particle attempts to exit the lattice from a given boundary site, it is simply 

reset at that boundary site. 



www.manaraa.com

11 

The calculations performed in this paper are of two kinds. First, we use the theory of 

finite Markov processes to compute (n}1 and (n}2 , for small, finite lattices subject either to 

periodic or confining boundary conditions. The advantage of this approach is that one obtains 

numerically-exact solutions to the problem under study and, in certain cases, one can construct 

closed-form analytic solutions. Mirroring this, we also perform Monte Carlo calculations, first 

validated by comparison with the Markov results and then used to analyze systems of large 

spatial extent. 

The plan of this paper is as follows. In Secs. 2.2-2.4, we consider successively lattices 

of Euclidean dimension d = 1, 2 and 3, as well as the Sierpinski gasket, a lattice of fractal 

dimension D = In 3/ In 2. The influence of size effects, boundary conditions and other related 

topological features such as the connectivity and the Euler characteristic is discussed in each 

dimension. The main conclusions are summarized in Sec. 2.5. 

2.2 Euclidean dimension, 

The 1WT problem on a d = 1 finite lattice subject to periodic boundary conditions was 

solved by Montroll [6] analytically. The result he found was: 

N(N + 1) 
(n)i = 6 ~ (2.3) 

where N is the total number of sites in the lattice. 

The solution for the case of two walkers in d = 1 for a lattice subject to periodic boundary 

conditions can be obtained in closed form by formulating the problem as a classical ruin problem 

and solving the correspondence difference equations (7J. The result is 

(n>2 _ N(N + 1) (N + 2)/12(N — 1) for N even 
(2.4) 

(N + 1)(N + 3)/12 for N odd 

This result can also be obtained via the theory of finite Markov processes by calculating 

numerically-exact values of (n)2 for a series ofd = 1 lattices. From these results patterns can 

be recognized from which one can construct the above closed-form analytic solution. 

We notice a difference in the expression for (n) 2 for even and odd values of N also found in 

Refs. [l, 4] and which will turn out to become more pronounced in higher dimensions. We find 
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that this qualitative difference in behavior between even and odd lattices is always manifested 

if periodic boundaxy conditions are considered, but not if confining boundary conditions are 

imposed. This behavior can be rationalized by examination of small odd and even lattices. The 

key to this difference is in the reaction mechanism, which happens either via nearest-neighbor 

collision (NNC) or via same-site occupation (SSO). 

a b) 

Figure 2.1 Periodic d = 1 lattices with a) N = 3 and b) N = 4. 

Consider the two periodic lattices of size N = 3 and 4 shown in Figs. 2.1a and b. For 

N = 3, assume that we place a walker on site 1 and another one on site 3. Concerned only with 

the concerted motions leading to reaction, one can see that reaction takes place by SSO if both 

walkers jump to site 2, or by NNC if they attempt to exchange positions. Thus, both reaction 

channels are open. Now consider the periodic N = 4 lattice and place again the walkers on 

sites 1 and 3. The reaction can proceed by SSO if both walkers jump to site 2 or site 4 after 

one time step. Otherwise, they will always be two sites apart, essentially following each other 

in the lattice. This means that starting with the initial configuration of walkers on sites 1 and 

3, the only allowed reaction channel is SSO. On the other hand, if sites 1 and 2 are chosen 

as the initial positions of the walkers, or more generally any adjacent pair of sites, reaction 

can only occur by NNC. This is true because any concerted motion will either lead to NNC 

or the walkers will remain nearest-neighbors after each time step. More generally, it is easily 

seen that for an even lattice only one of the reaction channels is active for any given initial 

configuration, whereas for odd lattices, both can take place. This phenomenon will hereafter 

be referred to as the "even-odd effect" . 
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We next consider the 1WT and the 2W problems in a d = 1 lattice subject to confining 

boundary conditions. mom Markov theory, one obtains for the 1WT case: 

n N(N + 1) (2.5) ~ )1 = 3

According to this formula, the reaction e$iciency is reduced by a factor of 2 with respect to 

the periodic case described by Eq. (2.3) for all system sizes. The reason is that the lattice with 

confining boundaries and a trap T can be decomposed into two disconnected periodic lattices, 

each of them with atrap,-since the parts of the lattice on either side of T do not communicates

This equivalence is illustrated in Fig. 2.2a for a confining lattice with N = 4. The weighted 

size of all equivalent periodic lattices resulting from the different positions of the trapping site 

T is larger than N. Similar arguments are expected to apply in higher dimensions. Thus, 

confinement always reduces the efficiency of the reaction. 

As for the 2W problem, no closed form expression similar to Eq. (2.4) has yet been derived 

for the case of confining boundary conditions. However, values of (n) 2 for this case could 

be calculated numerically using both the Markov method and Monte Carlo simulations. As 

in the 1WT case, the efficiency is smaller than in the periodic lattice case, but the increase 

in (n~ 2 when confinement is imposed is smaller than the factor of 2 found in the 1WT case 

for all values of the lattice size N larger than two,7 approaching a value close to 1.70 from 

below in the asymptotic limit (not shown) . Once more, an equivalence with the periodic case 

can be established here. However, the difference with the 1WT case is that now the size of 

the equivalent periodic lattices fluctuates in time, as it depends on the instantaneous distance 

between the walkers. These lattice size fluctuations possibly explain why the loss of efficiency 

is smaller in the 2W case when one switches from periodic to confining boundary conditions. 

We notice that no even-odd effect is to be expected in the confining case. This is .illustrated 

in Fig. 2.2b with two walkers initially placed on sites 1 and 3. Obviously SSO occurs if both 

walkers jump to site 2 . If both walkers jump to the left, then the walker on site 3 will jump to 

site 2, but the walker on site 1 will not move. Both walkers occupy now adjacent sites and NNC 

6For the special case where the trap is placed at an edge site, the confining lattice reduces to a single rather 
than to two periodic lattices. 

7For N = 2, a confining lattice is even more effective than a periodic one. 
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0 
Figure 2.2 a) Correspondence between confining and periodic boundary con-

ditions for the two symmetry-distinct trap configurations in a 
confining 4-site lattice. Sites with same numbers are symme-
try-equivalent. b) Four site confining lattice. 

becomes possible at the next time step. For the other symmetry-distinct initial .configuration 

with walkers at sites 1 and 2, one can formulate an analogous sequence of jumps leading to 

SSO. Thus, for a given initial condition, the imposition of confining boundary conditions allows 

both reaction channels on an even-site lattice, whereas with periodic boundary conditions only 

one of them is realized. 

Figure 2.3 depicts the behavior of the relative efficiency I' defined in the Introduction as a 

function of the lattice size N. It reveals an important feature, seen for all Euclidean lattices 

studied regardless of dimension or class of boundary conditions.$ The curve I' vs. N exhibits 

a steep increase initially with increase in N but then it "flattens out" and appears to be 

saturating at a particular limiting value I'~ - limN.~~ r. The limiting value l,~ is different 

$The sole exception is the d = 3 cubic lattice subject to confining boundary conditions; see Section 2.4.1. 
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Figure 2.3 I' vs. N in d = 1. The curve for the periodic case is generated 
from the exact analytical results and the data for the confining 
case is from Monte Carlo simulations. 

for different dimensions, but the same steep increase followed by a very gradual. increase to a 

limiting value is found. For the periodic case in d = 1, the numerical evidence suggests that the 

curve is approaching a value close to 2; upon inspection of the analytic form of the solutions 

given by Eqs. (2.3) and (2.4) one sees that the value in the limit of large N is exactly 2. This 

is related to the fact that, due to the translational invariance of the lattice, the 2W problem 

can be reduced to an equivalent 1WT problem, and the effective diffusion coefficient for the 

latter becomes twice as large in the large N Iimit [7] . 

A second feature revealed by a closer examination of the analytic form for r in the periodic 

case is that the increase with size is staircase-like since r takes the same value for two consecu-

tive odd and even values of N [7] . This consequence of the even-odd effect characteristic of the 

periodic case is not seen at the scale of resolution of Fig. 2.3 and is actually unimportant for 

the qualitative behavior over sufficiently large N intervals. Unlike toroidal (periodic) lattices in 

higher dimensions, the even-odd effect in one dimension does not lead to different asymptotic 

values I'~ en and I'~d depending on whether only even or only odd lattices axe considered for 

the computation of the respective walklengths. 
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n 
c v 

<n>2

Figure 2.4 (n)1 vs. (n)2 in d = 1. The slopes of the best-fit lines axe: Periodic 
= 1.97 and Confining = 2.35. N,,,;,, = 49 for the periodic case 
(N,n;n is the smallest data point used in the calculation of the 
best fit curve.) Both curves have R values of greater than 0.999. 

In general, plotting the (n)1 vs. the (n) 2 data for sufficiently large values of N, as displayed 

in Fig. 2.4, is a convenient way of determining the saturation value I'~ . The slope value from a 

least-squares curve fit for periodic lattices is 1.97, in good agreement with the exact analytical 

value, and 2.35 for confining lattices. 

2.3 Euclidean dimension, d = 2 

A square-planar lattice with periodic boundary conditions is topologically equivalent to a 

torus and has an Euler characteristic X of 0. Results in d = 2 have already been reported 

for the case of asquare-planar lattice subject to periodic boundary conditions [1] . Figure 2.5 

shows clearly the behavior of I' in the large lattice limit, which is different for odd and even 

lattices. In Ref. [1], analytical evidence was provided to show that the asymptotic limit of r 

for odd lattices is I'~d = ~. 

As mentioned in the Introduction, surfaces are characterized topologically not only by 

their Euclidean dimension but also by their Euler characteristic. Thus, it is also of interest to 
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Figure 2.5 ~n)1 vs. ~n) 2 in d = 2. The slopes of the best-fit lines are: Con-
fining = 1.66, Even = 1.25, Odd = 1.42, Cube Surface = 1.47. 
All data are calculated from simulations. -The values of Nmin are: 
Confining = 25, Even = 100, Odd = 81, Cube Surface = 24. All 
R values are greater than 0.999. 

consider non-toroidal surfaces with Euler characteristic X ~ 0. In particular, for the sphere and 

the family of polyhedra homeomorphic to it, one has X = 2. We shall consider two examples, 

the first of which is the case of diffusion-reaction processes on the surface of .the Platonic 

solids. One of the reasons motivating the study of such polyhedral systems is that they 

mimic some features of real-world solid catalysts where the reaction takes place on particular 

crystallographic faces of the solid. In earlier work [8] , the vertices of the Platonic solids were 

used as the allowable particle positions. The movement of each particle was permitted along 

any adjoining edge. In the present study, we report the results of the calculation using the 

faces of the Platonic solids; the particle moves from face to adjacent face, crossing only one 

edge at each time step. The relationship between these two calculations is reciprocal. In formal 

language, two polyhedra are dual if the number of faces of one of them equals the number of 

vertices of the other, and vice versa [9] . Recall that the tetrahedron has 4 faces and 4 vertices 

and both faces and vertices have a valency of 3. The octahedron has 8 faces and fi vertices, 
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and the hexahedron (cube) has 6 faces and 8 vertices. The valency of the octahedron faces is 

3 as is the valency of the cube vertices. Likewise, the valency of the octahedron vertices is 4 

as is the valency of the cube faces. Performing the calculation on the faces of the octahedron 

is equivalent to the calculation on the vertices of the cube, and the same reciprocal relation 

holds true when examining the icosahedron and the dodecahedron. Table 2.1 shows results for 

(n)1 and (n)2 on the Platonic solids. As can be seen, with the exception of the octahedron, I' 

increases with N, in line with the results for the square planar lattice. 

Object N valency (n)1 (n)2 I' 
Tetrahedron 4 3 3 3 1 

Hexagonal Lattice 4 3 3.6667 4.8214 0.7606 
Octahedron 8 3 8.2857 9 0.9206 

Hexagonal Lattice 8 3 8.2857 9 0.9206 
Icosahedron 20 3 28.8421 21.0955 1.3672 
Hexahedron 6 4 5.2 5.0182 1.0362 

Square Lattice 6 4 5.7714 5.8915 0.9796 
Dodecahedron 12 5 12.7273 11.1676 1.1397 

Table 2.1 Analytic results for Platonic solids and planar analogues with pe-
riodic boundary conditions 

It is instructive to view the results of the Platonic solids in tandem with their planar 

analogues. The tetrahedron, octahedron and hexahedron can be placed in correspondence 

with periodic planar lattices with the same valency and same value of N; the dodecahedron 

and icosahedron have no periodic, planar analogues. In correspondence with. the tetrahedron 

and octahedron we constructed hexagonal lattices for comparison, while the hexahedron was 

compared with a 2 x 3square-planar lattice. The tetrahedron and hexahedron have smaller 

values than their planar analogues for the walklengths (n} 1 and (n) 2 but larger values of I'. 

Surprisingly all the walklength values for the octahedron and the 8-site hexagonal lattice are 

identical. Upon further examination of this degeneracy, one finds that the values are identical 

because the connectivity of the octahedron is identical, site by site, with the connectivity of the 

8-site periodic hexagonal lattice. These calculations show, surprisingly, that the connectivity 

of the lattice seems to play a relatively more important role than the Euler characteristic in 
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determining the value of the mean walklength. 

We also examined the influence of imposing confining boundary conditions on the planar 

lattice analogues of the Platonic solids. Owing to the fact that the connectivity of sites on 

the boundary of _these (finite) lattices changes, the values of (n} 1 and (n) 2 change. The values 

of (n) 2 for all three planar analogues are only slightly larger than for the case where periodic 

boundary conditions are imposed. On the other hand, the values of (n)1 are considerably larger 

than the values of (n} 1 calculated for periodic boundary conditions; for the N = 4 hexagonal 

lattice, the N = 8 hexagonal lattice and the N = 2 x 3square-planar lattice, the value of 

(n)1 increases by a factor of 3, 4 and 2, respectively. Thus, in small systems, changes in the 

boundary conditions have a significant effect on the calculation of (n)1, but less so on the 

calculation of (n) 2. Overall, the influence of boundary conditions on both the 1WT and 2W 

cases for these planar analogues of the Platonic solids is more drastic than is the case for a 

(small) d = 1 lattice. This is reflected in the value of I', which increases by a larger factor here 

than in the d = 1 case when confining boundary conditions are imposed. 

In order to emulate large-size systems, we have studied diffusion-reaction processes on the 

surface of a cube, which is also of Euclidean dimension d = 2 and Euler characteristic X = 

2. The particle is confined to the surface, and each face of the cube is divided into a N x N 

square planar grid so that there are N x N accessible sites on each face. The total number of 

sites is N x N x 6. Note that for N = 1 the previous case of an hexahedron is recovered. The 

valency of each site is exactly four, keeping in mind that some movements of the walker will 

take it to a different face. 

Figure 2.5 summarizes the d = 2 results in the large lattice limit. It is seen that, on 

the surface of a cube, the differential eflzciency I', given by the slope of the curve (n)1 vs. 

(n}2, is larger than on a periodic but smaller than on a confining square planar lattice. As 

expected, the efficiency of 1WT processes is once again decreased in a more pronounced way 

when confinement is imposed. The even-odd effect is not seen for processes on the surface 

of a cube or for planar lattices subject to confining boundary conditions. On the cube, an 

argument analogous to the one put forth for d = 1 applies, except that the walkers on the 
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cube surface have two additional degrees of freedom. However, this has no influence on the 

fact that, irrespective of the starting configuration, both NNC and SSO may still take place 

because of the the walkers' ability to traverse edges and thereby migrate to different faces of 

the cube. 

2.4 Higher dimensions and fractal structures 

2.4.1 Euclidean dimension, d = 3 

Numerically-exact results have been reported previously [10, 11] for the 1WT case on a 

d = 3 cubic lattice subject to periodic boundary conditions. We have extended this study 

to calculate (n} 1 and ~n} 2 for both periodic and confining boundary conditions by means 

of Monte Carlo simulations. Ind = 3, the even-odd effect is even more pronounced than 

in the square-planar lattice case, as may be seen in Fig. 2.6. From the least-square fits we 

infer I`~en = 0.72 and rid = 1.22. This suggests that the even-odd effect is enhanced with 

increasing dimensionality of the hypercubic lattice. Note also that r~ < 1 for even lattices, 

the only case where the differential efFiciency goes below unity except for the octahedron. 

For confining boundary conditions, another significant result ford = 3 is shown in Fig. 2.7. 

As is evident, 1, approaches its limiting value from above, and I'~ is found to be about 1.42 

in this case. In all previous cases, namely the d = 1 and 2 cases with both types of boundary 

conditions, the graphs had the general features of Fig. 2.3, approaching I'~ from below. 

2.4.2 F~actal dimension, D = In 3/ In 2 

From the results presented for. the cases d = 1, the d = 2square-planar lattice, and d = 3 

cubic lattice subject to confining boundary conditions, one can infer that, with increasing 

dimensionality d of the lattice, I'~ decreases monotonically taking the values 2.35, 1.66 and 

1.42, respectively, for d=1, 2 and 3. In order to assess further the role of dimensionality and 

of confinement, one can next consider the case of a Sierpinski gasket, whose ramified self-

similar structure is described by an intrinsic non-integer dimension D = In 3/ In 2 ^~ 1.585. 

The gasket can be constructed hierarchically as a limit of successive generation gaskets. Each 
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Figure 2.6 (n} 1 vs. (n) 2 in d = 3. The slopes of the best-fit lines are: Odd 
= 1.22, Even = 0.72, Confining = 1.42. All data are calculated 
from simulations. Nmin = 8 for all the curves with all R values 
greater than 0.999. 

generation gasket is characterized by an index i . The i = 0 generation is an equilateral 

triangle whose 3 vertices play the role of lattice sites, i.e. allowable reactant positions. The 

i = 1 generation can be constructed by appending to each of the bottom vertices of the primary 

triangle an additional equilateral triangle so that the upper vertices of the appended triangles 

are identical with the bottom vertices of the primary one and the appended triangles have a 

common bottom vertex. The i = 2 generation is constructed by performing the same procedure 

on the resulting structure, i.e. appending twice the same structure at its bottom, and so on. 

Thus, at a given generation step, the number of identical substructures increases by three 

while the linear size doubles, yielding the above value of D for the Sierpinski gasket obtained 

when i --~ oo. For each generation, the lattice sites are identified with the three apex vertices 

located at the outmost corners of the corresponding gasket and with the common vertices of 

any pair of adjacent triangles in the gasket. The number of sites in the ith generation gasket 

is N = N (i) _ (3/2) (3z -}- 1) . 

The gasket shares some common features with a squaxe-planar lattice. First, the embedding 
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Figure 2.7 I' vs. N in d = 3 subject to confining boundary conditions; all 
data are calculated from simulations. 

dimension is the same, viz. d = 2. Secondly, except for the vertex sites on the gasket, the 

valency of all other sites is v = 4; increasing the size of the gasket decreases the fraction of 

lattice sites not having a valency of 4. All sites on asquare-planar lattice subject to periodic 

boundary conditions have avalency v = 4. On imposing confining boundary conditions on the 

square-planar lattice, all interior sites will have valency v = 4, vertex sites will have valency 

v = 2 and boundary sites will have valency v = 3; the percentage of vertex and boundary 

sites on asquare-planar lattices also decreases with increase in lattice size. Thus, both for 

the gasket and for a finite square-planar lattice subject to confining boundary conditions, 

the relative importance of interior sites on the statistics increases with increasing lattice size. 

Finally, one can easily convince oneself that in the 2W case both the SSO and l~TNC channels 

can take place for any given configuration of the walkers on the gasket, so no even-odd effect 

is expected here either. 

In view of the above resemblances, it is interesting to inquire to what extent the results 

obtained for the relative efficiency I' on the gasket are similar to those for the square lattice with 

confining boundary conditions. To this end, (n} 1 and ~n~ 2 and their ratio were calculated using 
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the theory of finite Markov processes for N = 6, 15, and 42 and via Monte Carlo simulations 

for all generations up to N= 3282. For the 1WT case, aclosed-form analytic expression for 

the walklength is already available if the trap is maintained at one of the apex vertices of the 

ith generation gasket, namely [12] 

3 -}- 1 
(2.6) 

In performing Monte Carlo simulations, the amount of computing time can increase dra-

matically with increase in gasket size N thus limiting the number of statistical realizations 

nrea~ • In the 1WT case, each realization comprises all sets of possible configurations for the 

walker and the trap, while in the 2W case, each realization comprises all sets of possible con-

figurations for the two indistinguishable walkers. The analytic expression of (n) l,a given in 

Eq. (2.6) was used to test the accuracy of MC results for gasket sizes N > 123, where the 

Markovian approach becomes cumbersome due to .the size of the relevant transition matrices. 

It was found that, as N is increased, the number of realizations required to reach a given 

accuracy in (n) l,a with respect to the exact result given by (2.6) decreases significantly. For all 

values of meat given in Table 2.2, the relative error turned out to be < 0.4% (data not shown) . 

Therefore, the results for (n)1 and (n) 2 for large N displayed in Table 2.2 seem reliable enough 

to describe correctly the qualitative behavior of the efficiencies. 

i N 

1 6 
2 15 
3 42 
4 123 
5 366 
6 1095. 
7 3282 

Markov Results 
(n)1 (n)2 I' 
6.5 4.3860 1.4820 

25.6857 16.0957 1.5958 
118.0582 68.9220 1.7129 

Monte Carlo Results 
(n)1 (n)2 r nreal

6.500 4.386 1.482 107
25.686 16.096 1.596 107
118.06 68.94 1.713 106
578.18 315.90 1.830 105
2886.1 1500.9 1.923 103

14465.3 7282.9 1.986 10 
72512.6 35724.1 2.029 1 

Table 2.2 Walklength results for successive Sierpinski generation gaskets. 

Although the convergence to a hypothetical saturation value is very slow in N, one notices 

from Table 2.2 that I' appears to exceed the value 2 with increasing N, in contrast to the result 

r~ = 1.66 for a confining square lattice. Assuming that I' keeps on increasing monotonically 
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with the gasket size N, a question of interest is whether I' approaches a saturation value less 

than the value 2.35 found for a d = 1 confining lattice, or whether the asymptotic value remains 

between the values 1.66 and 2.35, as one might expect in view of the monotonic decrease of 

I'~ with decreasing dimensionality referred earlier. 

2.5 Conclusions 

In this work, results, both analytic and numerical, on the role of boundary effects and of 

geometric factors such as size, dimensionality and topological invariants on the efficiency of 

encounter-controlled reactions have been obtained. Values for the mean walklengths (n)1 and 

~n)2 for the 1WT and the 2W case as well as the relative efficiency r have been computed 

both for large lattices and small size systems. 

The relevance of considering in detail systems of restricted spatial extent is increasing, as 

it is nowadays realized that heterogenous catalytic processes of great importance take place 

on single crystallographic faces of solid catalysts where they can involve only a few tens of 

particles. Despite the fact that the numerical values obtained in this work for small systems 

are not universal, some universal trends of a different kind have nevertheless been observed, 

e.g. the dependence (increasing, monotonic, etc.) of I' on valency, connectivity and boundary 

conditions. In general, one has I' > 1, implying that the reactive efficiency of two moving 

reactants is greater than a diffusing plus an immobile one. 

Turning now to large-size systems, our results show that 1, increases with increasing lattice 

size until it reaches awell-defined limiting value I'~ . For a given lattice geometry, this value 

decreases with increasing dimensionality. With the exception of the even cubic lattice, I'~ > 1. 

For Euclidean lattices of square-planar or cubic symmetry and subject to periodic boundary 

conditions the value of I'~d is exactly 2 and ~ in one9 and two dimensions respectively, and 

about 1.22 in three dimensions. One is tempted to advance that this last number is actually 

within the precision af~£orded by the simulations just ~(3/2). Now, 1, ~ and ~ are the 

9In the diffusive limit, it can be shown that the diffusion coefficient for the relative motion of both reactants 
is twice as large in the 2W case [7] . Discrepancies from this value for small systems are due to the discreteness 
of the lattice. Possibly similar arguments hold in higher dimensions. 
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natural metrics of the lattices here considered in, respectively, 1, 2 and 3 dimensions. The 

results for I~O~d could then be particular cases of a universal expression: the ratio of the 

maximum distance that two simultaneously moving reactants can traverse in one time unit 

before they react or find themselves in nearest neighbor positions, over the analogous quantity 

for the one reactant plus trap case. Further work is necessary to assert the validity of this 

conjecture and to understand why it manifests itself only for odd lattices. 

For a given system size, the 1WT and the 2W reaction efficiency becomes less efficient when 

confinement is introduced, but the decrease in efficiency is smaller for the 2W case, leading 

to an increased value of r with respect to the periodic case. This boundary effect appears to 

become less significant with increasing system size, although it is not completely absent in the 

thermodynamic limit. 

The questions raised in this work and the results obtained constitute potentially useful 

elements in the important problem of optimal design of the microreactors nowadays involved 

in chemical kinetics under nanoscale conditions. For instance, as seen in Sec. 2.3, a small 

catalytic surface in the form of a sphere or of a hexahedral surface homeomorphic to it (x = 2) 

would enhance the reaction efficiency as compared to a surface homeomorphic to a torus 

(x = 0) . These observations highlight the need to incorporate in the design such aspects as

the geometry of the microreactor, which can enhance an increasingly effective mixing of the 

reactants and hence an increased efficiency of the reaction itself. Finally, the role of the kinetics 

(linear vs. nonlinear) in modulating or enhancing the importance of such factors is certainly a 

problem worth addressing and this study is underway. 
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CHAPTER 3. Synchronous vs. asynchronous dynamics of 

diffusion-controlled reactions 

A paper published in Physica Al 

E. Abad2, G. Nicolis3, Jonathan L. Bentz4, John J. KozakS

Abstract 

An analytical method based on the classical ruin problem is developed to compute the mean 

reaction time between two walkers undergoing a generalized random walk on a ld lattice. At 

each time step, either both walkers diffuse simultaneously with probability p (synchronous 

event) or one of them diffuses while the other remains immobile with complementary prob-

ability (asynchronous event) . Reaction takes place through same site occupation or position 

exchange. We study the influence of the degree of synchronicity p of the walkers and the lattice 

size N on the global reaction's efficiency. For odd N, the purely synchronous case (p = 1) is 

always the most effective one, while for even N, the encounter time is minimized by a combi-

nation of synchronous and asynchronous events. This new parity effect is fully confirmed by 

Monte Carlo simulations on ld lattices as well as for 2d and 3d lattices. . In contrast, the ld 

continuum approximation valid for sufficiently large lattices predicts a monotonic increase of 

the efficiency as a function of p. The relevance of the model for several research areas is briefly 

discussed. 
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3.1 Introduction 

Recently, the modelling of diffusion-controlled reactions on lattices has attracted renewed 

interest due to synergies with some research areas like e.g. heterogeneous catalysis [1, 2], 

trapping problems [3], spin models [4], game theory [5], population dynamics [6] or biological 

problems [7J . An issue common to these systems is the important role played by the coexistence 

of different intrinsic time scales, the lattice characteristics (size and dimensionality) and many-

body effects. The interplay of these ingredients may strongly affect the efficiency with which 

statistical processes such as front propagation on catalytic substrates, the spread of an infection, 

kink propagation in magnetic systems, or exciton trapping in photosynthetic cells take place. 

In order to obtain analytical insight for such systems, it is often necessary to make simplifying 

assumptions which nevertheless preserve their main generic features. 

In this spirit, a prototypical diffusion-reaction system consists of two interacting walkers 

performing nearest neighbor jumps on a lattice [8]. The walkers are assumed to react with 

each other whenever they meet at the same lattice site or attempt to exchange positions. Each 

of such "encounters" results in instantaneous reaction, the process therefore being diffusion-

controlled. Regardless of the particular outcome of the reaction, a measure for its efficiency 

will be clearly given by the. mean encounter time of both walkers. 

In a pioneering work, Montroll investigated a simplified version of the problem in which 

one of the walkers is stationary, thereby playing the role of a fixed trap [9J . In a recent 

article [10] , Montroll's results have been extended with the help of a Markovian method to 

account for the possibility of simultaneous displacement of the walkers. In the present work, the 

problem is further extended to the case in which the motion of the walkers consists of a random 

sequence of two different events: at each tick of the clock, a synchronous event takes place with 

probability p, i.e., both walkers hop simultaneously to randomly chosen nearest neighbor sites. 

Alternatively, an asynchronous event takes place with probability 1— p, i.e. one of the walkers 

performs a nearest neighbor jump while the other remains immobile. Thus, the parameter p 

interpolates between the one walker plus trap case studied by Montroll (p = 0) and the case 

of two simultaneously moving walkers (p = 1) . A central question we shall investigate here 
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concerns the influence of the degree of synchronicity p of the walkers and the size N of the 

lattice in which they are embedded upon the reaction's efficiency. 

Our model may be of interest in several contexts. One can e.g. easily accommodate it 

to allow for events in which both walkers remain immobile in the original reference frame. 

Thus, three qualitative different joint events become possible for the two-walker system, which 

can e.g. be interpreted as resulting from a combination of two internal states for each of the 

walkers, namely a diffusing and an immobile state. Such two-state random walks [ll, 12, 13] 

are frequently used to model chromatographic [14] or electrophoretic separation processes, in 

which the propagation of charged particles in an external field may be occasionally stopped by 

entanglement with the molecules of the substrate. Such systems, along with hopping models 

for transport and recombination of carriers in solids [15, 16, 17], might provide additional 

motivation for considering a generalized version of the random walk. 

A different approach suggests to regard the fluctuations in the diffusivity of the walkers as 

a result of random fluctuations of lattice sites switching between a conducting and a stopping 

state, whereby the translational invariance of the lattice is preserved on average. An alternative 

formulation of the problem in terms of fluctuating dichotomous barriers between sites also 

seems possible [18J. Such models for dynamic random media are relevant for the description of 

several physiochemical processes like e.g. ligand diffusion in proteins [l9] or proton migration 

in water [20]. 

On the other hand, if one goes back to the original picture of two dissimilar walkers A and 

B, the model may be regarded as a schematized starting point for describing the dynamics 

of exciton absorption in biological light-harvesting systems [21]. In photosynthetic cells, a 

photon is absorbed by the pigment molecules (e.g. chorophyll) in the cell and may give rise 

to an excited energy state. The exciton hops by resonant energy transfer through a network 

or lattice of 200-500 pigment molecules (antenna system) and can be eventually trapped at 

a reaction center [22], which is usually considered to be immobile within the time scale for 

trapping (a few hundred picoseconds). The exciton energy is then used to trigger a series 

of redox processes in the chain of chemical reactions leading to the production of sugars and 
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carbohydrates. Thus, one of the time-limiting steps for the production of oxygen is precisely 

the absorption of the exciton by the trapping center. If we allow for a certain mobility of the 

reaction center (thereby generalizing Montroll's approach for exciton trapping), we can identify 

the latter with a slowly hopping walker, say the A walker, while the propagating exciton would 

play the role of the B walker. As long as the hopping rate of the A walker remains small, 

the situation may be identified with the almost purely asynchronous case (small p); this is 

normally the case in in vivo light-harvesting systems. However, a modification of the physical 

properties of the antenna system so as to make exciton propagation slower might, at least in 

principle, lead to interesting antiresonance phenomena as observed in our model. 

The paper is organized as follows. In Section 3.2, we define the two-walker system in detail 

and show how it can be recast into an equivalent one-walker system with absorbing sites. 

In Section 3.3, we report analytic work on the ld case and identify the principal differences 

between the purely asynchronous case (p = 0), the purely synchronous case (p = 1) and the 

mixed case (0 < p < 1) . These results are also supported by Monte Carlo simulations. In 

Section 3.4, similar results are found for the 2d and the 3d cases by means of simulations. In 

Section 3.5, the results are compared with the predictions of the continuum approximation 

valid for large lattices. Finally, Section 3.6 summarizes the main conclusions and discusses 

possible extensions. 

3.2 Formulation of the problem: two-walker vs. one-walker picture 

The staxting point is a ld periodic lattice with N sites and discrete time dynamics (cf Fig. 

3.1a). We place two walkers A and B on two distinct lattice sites and let them evolve at each 

time step as follows: 

1. with probability p, both walkers hop simultaneously to randomly chosen nearest neighbor 

sites (synchronous event). 

2. with probability 1 — p, one of the walkers (no matter which one) remains at rest while 

the other performs a jump to a nearest neighbor site (asynchronous event). 
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al b) 
Figure 3.1 a) two-walker system on a seven-site periodic lattice (walkers rep-

resented by black circles). b) Equivalent one-walker system with 
trap. For convenience, the walker labels A and B in Fig. 3.1a 
have been left out. The arrows in Fig. 3.1a indicate that both 
walkers perform a synchronous step. In Fig. lb this corresponds 
to a two-site jump of the walker. 

The walkers are assumed to be unbiased, i.e., their jumps are symmetric. We additionally 

assume that their jump directions axe completely uncorrelated. An encounter takes place when 

both walkers `land' on the same site or attempt to exchange positions. Each encounter triggers 

instantaneously an irreversible reactive interaction, say the annihilation reaction A -}- B -~ 0. 

The encounter time can thus be regarded as the characteristic reaction time governing the 

diffusion-controlled two-particle annihilation. 

In principle, the mean encounter time can be computed for a single initial configuration of 

the walkers; in many practical situations, though, one has little knowledge about the initial 

conditions. We shall therefore give preference to a definition of the mean encounter time which 

contains an additional coarse graining over all possible initial .configurations. In the sequel, we 

shall denote this quantity by (n) . The smaller (n) , the more efficient the reaction will be. 

Note that, due to the translational invariance of the lattice, the physical distinguishability 

of the walkers is irrelevant for the computation of (n) : in other words, it does not matter which 

of the walkers A or B hops more often, since (n) depends only on the relative motion of both 

walkers, the latter being fully characterized by p. Therefore, we shall assume for simplicity and 
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without loss of generality that A and B are physically identical walkers and drop the labels A 

and B, as has been done in Fig. 3.1a. 

For p = 0, only reactions through simultaneous site occupancy are possible. As far as (n} is 

concerned, this case is equivalent to the one treated by Montroll [9] . However, if p > 0, reaction 

through position exchange becomes possible. This technical obstacle makes the analytical 

treatment of the problem more difficult. 

A first step to circumvent this difficulty is to take advantage of the translational invariance 

of the lattice and reformulate the problem in terms of a single walker. To do so, we must 

switch over to a new co-moving reference frame in which one of the walkers remains stationary, 

thereby playing the role of a fixed perfect trap T (Fig. 3.1b). Clearly, an asynchronous event 

in the original two-walker system is equivalent to nearest neighbor. hopping in the single-walker 

system, while a synchronous event results either in a walker's jump by two lattice sites (if both 

walkers hop in opposite directions in the original reference frame) or its remaining at rest (if 

they hop in the same direction) . In this picture, reaction takes place any time the walker 

reaches or overreaches the trap T. 

TOO • O O O  T 

Figure 3.2 Lattice transformation for the one-walker system displayed in 
Fig. 3.1b. 

We can now take advantage of the simple lattice geometry and the fact that the trap is 

perfect to unfold the N-site lattice into an equivalent one with N -~- 1 sites and two perfect 

traps T sitting at each end site, as shown in Fig. 3.2 for N = 7. This transformation does not 

of course affect the characteristics of the walk; a walker jump in anticlockwise direction will be 

equivalent to a j ump to the left by the same number of sites in the transformed lattice. Next, 
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T  o  o• o 0 o T 
1 2 3 4 S 6 

r r r r 

-1 O 1 2 3 4 S 6 7 8 
Figure 3.3 Replacement of the traps T at each end site of the transformed 

lattice by two absorbing sites r. 

we replace each trap T by two (fictitious) reactive sites r (Fig. 3.3). The random walk will 

instantaneously terminate when the walker lands on any of these r-sites. We shall therefore 

occasionally call the r-sites "absorbing" in what follows. 

Let us assign the coordinates 1 to N — 1 to each of the non-absorbing sites, as shown in 

Fig. 3.3. Additionally, we term the r-sites at the left end —1 and 0 and those at the right 

end N and N -}- 1. An attempt to overcome, say the left trap, triggered by a synchronous 

event will be equivalent to a jump from site 1 to site —l. In contrast, the walker's landing 

on the trap can be realized either by an asynchronous event (jump from site 1 to site 0) or 

by a synchronous event (jump from site 2 to site 0). If the dynamics is purely asynchronous, 

only one r-site at each end will be needed, since jumps by two sites are not possible ire this 

case. Thus, events involving position exchange can be dealt with by going over to aone-walker 

picture and introducing fictitious absorbing sites. The mean duration of the walk averaged over 

the initial positions 1, . . . , N — 1 of the walker plays the role of (n) in the original two-walker 

system. 

A standard approach for the calculation of (n) is to formulate the problem for the re-

stricted walk between the absorbing sites in terms of a conditional first passage problem for 

an unrestricted walk on an infinite ld lattice [23]. The starting point is the Markovian master 

equation 

Pn+i(j) = 4 LPn(~ — 2) + 2Pn(~) + pn(~ + 2)~ + 1 2 
p 

(Pn(~ — 1) + Pn(j + 1)] , (3.1) 
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where Pn(j) is the probability to find the walker at a given site j in the infinite lattice after 

n time steps. The first term on the right hand side of eq. (3.1) is the contribution due to the 

synchronous events, by which the walker either remains at rest or it moves two lattice sites 

either to the left or to the right. The second term describes jumps by one lattice site as a 

consequence of asynchronous events. The mean time to absorption (n) can now be viewed as a 

first-passage time and computed via a generating function approach [23~. Specifically, (n} can 

be expressed in terms of the generating function for the probability of the walker arriving for 

the first time at a given r-site after a given number of steps without having been previously in 

neither of the other three r-sites. Unfortunately, the resulting expressions for (n) are not very 

transparent and their analytical dependence on N and p is not easy to determine. 

Another possibility is to make use of the single step probabilities appearing as coefficients 

in the right hand side of eq. (3.1) to compute the transition probabilities between the states 

of the underlying absorbing Markov chain. In this approach, (n) can be related to the row 

sums over the elements of the fundamental matrix for the transition to the absorbing state 

or, alternatively, to its smallest eigenvalue [24]. The disadvantage of this method is that it 

requires the inversion of increasingly large matrices as N becomes large. 

Finally, the method we shall further develop here exploits the analogy of our random walk 

problem with the classical ruin problem studied by Feller [5]. Even though this approach has 

the disadvantage of being difficult to generalize to higher dimensions, it provides an elegant 

solution for the ld problem. 

3.3 Connection with ruin problem and analytical solution 

We first recall briefly the classical gambler's ruin problem. Consider a single walker (in 

our setting, this would correspond to the limit p=o), whose position z is viewed as the capital 

of a gambler playing against an adversary whose capital is N — z. At each time step, a 

trial is made, as a result of which the gambler wins or loses one euro. Thus, the gambler's 

winning corresponds to a nearest neighbor jump of the walker to the right, while losing the 

trial corresponds to a jump to the left. The game goes on until the gambler's capital is reduced 
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to zero or increases to N (absorption of the walker at sites 0 or N). One is interested in the 

mean duration of the game (n)z when the gambler starts with a given capital z. This quantity 

can be shown to be finite as long as N < oo and obeys the following difference equation [5~: 

(n~z = 2~n)z+i + 2(n)z—i + 1, 

with the boundary conditions 

0<z<N (3.2) 

(n)o = 0 and (n)nr = 0. (3.3) 

Eq. (3.2) states that the walker has no memory of where it has been at earlier time steps; if it 

is initially at site z, it will either jump to site z+l ar to site z-1 with probability 1/2. Once at 

any of these sites, the walker will continue his walk without remembering its previous position 

z. It is as though the walker started a new walk from z + 1 or z — 1 with equal probability, 

except that the expected value of the mean time to absorption must be increased by one unit 

(25]. The boundary conditions (3.3) reflect the fact that, if the walker is initially placed at 

a r-site, it is immediately absorbed. In the original two-walker system, this is equivalent to 

placing both walkers at the same site. 

Eqs. (3.2)-(3.3) can be solved by standard methods, e.g. by writing the general solution as 

the sum of the general solution of the corresponding homogeneous equation plus a particular 

solution [26]. One obtains in this way 

and 
N-1 / 1~ ~ 1~~ ~ N ON+1,

n N nz 6 
z=1 

(3.5) 

The opposite limit of the above (p = 1), corresponding in our setting to a purely syn-

chronous motion of two walkers, is somewhat less standard. In this case, only jumps by zero 

or two lattice sites may occur. Depending on its initial position, the walker may land on any 

of the four r-sites depicted in Fig. 3.3. Therefore, two additional boundary conditions for the 

absorbing sites —1 and N -I- 1 are needed. 
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In the gambler's jargon, a jump by two sites means doubling the stake of each trial, i.e., the 

player wins or loses ,two euros with probability 1 /4. Besides, a tie occurs with probability 1 /2 

(no jump) . The game terminates when either the player or his adversary reaches or overreaches 

a capital of N euros. Now, the difference equation for the duration of the game is a fourth-order 

one: 

0<z<N. (3.6) 

The solution of this equation requires four boundary conditions, namely 

(n)-1 = 0, (n)o = 0, (n)N = 0 and (n)N+1 = 0. (3.7) 

A particular solution of (3.6) is given by — 2 z2. The characteristic equation of the homogeneous 

equation has two double roots X1,2 = fl. Therefore, the full inhomogeneous solution reads 

(n)z = —~z2 + cl + c2z + (c3 + c4z)(-1)z, (3.8) 

Substituting into eq. (3.6) one obtains a system of equations for cl to c4 

= z(N — z~~2 

whose solution yields 

for z odd, N odd, 

for z even, N odd, 

for z odd, N even, 

for z even, N even. 

The spatially averaged time to absorption (n) is again easily computed. One obtains 

(n) = N(N + 1)(N -F 2)/12(N — 1) for N even, 

_ (N + 1)(N + 3)/12 

(3.9) 

for N odd. (3.10) 

For notational convenience, let us rename the value of (n) obtained from eqs. (3.10) as 

(n)~1~, and the corresponding result of Montroll for the one-walker problem (eq. (3.5)) as (n)~~~. 

A comparison between (n)~~~ and (n)~l~ is shown in Fig. 3.4. As expected, the synchronous 

case becomes more efficient as soon as the lattice gets sufficiently large (N > 5). In the limit 

of a very large lattice, it is asymptotically twice as efficient as the asynchronous case [see Fig. 

3.5)]. 
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Figure 3.4 Mean encounter time as a function of the lattice size for the 
purely synchronous case (n) _ (n)~l~ (circles) and the purely 
asynchronous case (n) _ (n)~°> (crosses). 

It is also worth comparing the z-distribution of the encounter time for the case p = 1 (eq. 

(3.9)), with the earlier known result for p = 0 (eq. (3.4)). For odd N, the spatial profile in z 

displays some qualitative similarities in both cases (cf. Figs. 3.6a and 3.6b). The highest value 

of (n)z is attained at those sites located at maximum distance dz from the closest absorbing site. 

For p = 0, the encounter time always increases with increasing dx , and it becomes maximum 

when z = (N f 1)/2. In contrast, the behavior is no longer strictly monotonic for p = 1, since 

(n)z either increases or remains constant as dx becomes larger, giving rise to a "staircase" 

profile for high enough values of N (Fig. 3.6b). 

For even lattices, there are more marked differences between the cases p = 0 and p = 1. 

For p = 0, the discrete spatial profile resembles an inverted parabola like in the odd lattice 

case, the maximum now being located at z = N/2. However, if p = 1, one observes a series 

of alternating valleys and peaks in the distribution (cf Figs. 3.7a and 3.7b). There are two 

subcases here: if N is divisible by 4, the highest values of (n)z are attained for z = (N f 2)/2 

(Fig. 3.7a). Otherwise, the maximum value corresponds again to z = N/2 (Fig. 3.7b). 



www.manaraa.com

38 

.. 1.6 
T 
\/ 

~ 1.4 
V 

1.2 0 

C ~ 
V 

2; 
1.8- 
1.6 

~ 1.4 
v 1.2 

1= 
= 0.8 
~ 0.6 

0.4 ' l l 1 1 1 1 1 1 1 
0 1 2 3 4 6 7 8 910 

1   1  1'rnrrrr~ l I rl 

20 40 60 80 100120140160180 200 
N 

Figure 3.5 R,a,tio (n)~°>l(n)~l~ as a function of N. Note that the value of the 
ratio is the same for two consecutive odd and even values of N. 
The inset displays the behaviour for small N. 

Note that for p = 0 and even N the time to absorption when the walker is started at sites 

1 or N — 1 is smaller than in the purely synchronous case. An intuitive argument points to 

the fact that, in the former case, the walker is absorbed one out of two times after the first 

time step, while absorption takes place only one out of four times if p = 1. However, this 

argument should be taken with care, since it fails for odd N. Besides, as we shall see later on, 

the minimum of (n} 1 = (n} N_ 1 corresponds to a process with p > 0. 

We finally turn to the general case of a mixed walk. Assume that a given event is syn-

chronous with probability 0 < p < 1 and asynchronous with probability 1 — p. The difference 

equation for (n}z now reads: 

1— 1—
(n)Z = p(n)z+z + p(n)z+i + p(n)z + p(n)Z—i + p(n)z-2 + 1, 4 2 2 2 4 

0<z<N. (3.11) 

The boundaxy conditions axe again given by (3.7). A particular solution of eq. (3.11) is given 

by —z2/(1 ~-p)• The roots of the underlying characteristic equation are 

—lf~/1—p2
~i,2 = 1, X3,4 = (3.12) 

p 
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N (n) 
2 2/(2 - p) 
3 2 
4 (10/3)p2 + 2p4  4 
5 4(2p - 5)/(p2 - 4) 
6 (28/5)(p2 - lOp + 10)/(p3 - 4p2 - 4p + 8) 
7 (4/3)(p2 + 8p - 14)/(p2 - 2) 
8 (12/7)(13p3 + 6p2 - 126p + 112)/((p - 2)(p3 + 6p2 - 8)) 
9 10(2p3 - 5p2 - 16p + 24)/((p2 + 2p - 4) (p2 - 2p - 4)) 

10 (22/9)(7p4 - 76p3 ~- 16p2 -I- 288p - 240)/(p5 - 6p4 - 12p3 -f- 32p2 ~- 16p - 32) 

Table 3.1 Analytic expressions for (n) . 

The full solution reads 

(n~z = - z2I11 ~-T~~ -I- Cl -~ CZz ~- C3 ~3 ~- C4 ~g~ (3.13) 

where the constants cl - c4 are now given by the linear system 

1 
~- Cl - CZ -I- ~3 1C3 -}- ~q 1C4 = O, (3.14a) 

l+p 

N 2
-~ Cl + NC2 + ~3 C3 + ~4 Cq = ~, (3.14c~ 

l+p 

N+1 2~ l+p ~  +cl+(N+1)Cz-~~3 +1~3+~4- F1 C4=O. ~3.14C1~ 

We prefer to omit the rather lengthy analytic form of the coefficients cl-c4. From the above 

equations, (n)x and (n) can be explicitly computed. For (n) one has an expression of the form 

(n) 6~ l~+ p)~ + cl (N~ p) + 
N c~ ~N~ p) 

+ N ~ 1 ~~3tN~p~ 
~'~311'~~N-1 + 

~4~N,p~ L~4~p~~N-1~ (3.15) 

Table 3.1 displays the analytical expressions of (n) as a function of p for increasing values of 

N. These are rational functions of p whose complexity increases with N. For N > 4 and small 

p, one can obtain afirst-order approximation to the exact solution by Taylor-expanding eq. 

(3.15): 

(n 
N-3 

N 
p+C~ ~p2~ J . (3.16) 
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Figs. 3.8a and 3.8b contain several numerical plots of (n} , as a function of p for different 

values of N. For N = 2, the purely asynchronous case is more effective than the purely 

synchronous case 6. As synchronicity is turned on, a monotonic increase of (n) as a function 

of p is observed. For N = 3, (n) does not depend on p. At each individual time step, the 

probability of reaction is always 1/2, regardless of whether both walkers hop or only one of 

them. In a sense, the cables N = 2 and N = 3 are non-generic, since they only involve a single 

symmetry-distinct initial condition. For N > 4, a new parity effect appears: if N is even, the 

most effective process is observed for an intermediate value of p associated to a minimum of 

the function (n) in the physically acceptable p-interval [0, 1]; in contrast, for odd lattices, (n) 

is a monotonically decreasing function of p, i.e., the most effective process is always the purely 

synchronous one. For N = 4, any intermediate value of p makes hopping more effective than in 

both limiting cases, and a minimum of (n} is obtained for pmin = 2/3. For higher, even values 

of N, the minimum is rapidly shifted to the right (p„-~Zn ~ 0.86 for N = 6) and the p-interval 

for which processes are more efficient than the purely synchronous case shrinks dramatically. 

For large N, prrLin gets arbitrarily close to 1 (see Table 3.2) . 

N prriin 
2 0.0000 
4 0.6667 
6 0.8596 
8 0.9204 
10 0.9483 
12 0.9636 
14 0.9729 
16 . 0.9791 

Table 3.2 Values of p„z2n with 4-digit accuracy. 

A series of Monte Carlo simulations for the periodic two-walker system has been carried out 

to confirm our analytic results based on the one-walker description. For two different lattice 

sizes, namely N = 7 and N = 8, we have performed a series of statistical runs to compute (n} , 

each run thereby comprising a whole set of symmetric-distinct nonreactive configurations. Due 
s Obviously, the purely asynchronous case has a maximum efficiency in this case, since the walker is always 

trapped after the first step. 
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to the large variability (n2) — (n)2 characteristic of first-passage problems, a relatively high 

number of runs was needed (106) to obtain an accurate value for (n). The (n)-values obtained 

from simulations (with an accuracy of three significant digits) are listed in Tables 3.3 and 3.4 

for the cases N = 7 and N = 8, respectively. The agreement with the analytical predictions is 

good, the maximum observed deviation is off the theoretical value by about 1% only. 

p l n} sim (n} theo 

0.2 8.410 8.408163 
0.5 7.430 7.428571 
0.8 6.826 6.823529 
1 6.667 6.666667 

Table 3.3 Theoretical vs. simulation value of (n) for N = 7. 

p (n} sim (n} theo 

0.2 10.709 10.706177 
0.5 9.345 9.344538 
0.8 8.495 8.496241 
1 8.572 8.571429 

Table 3.4 Theoretical vs. simulation value of (n} for N = 8. 

In order to obtain additional insight in the even-odd transition mechanism, we have studied 

qualitatively (n} z as a function of p and N for each single initial position z of the walker. Let 

us characterize each site z by its distance dz = min(z, N — z) to the closest r-site. For not 

too large values of p, the behavior of the encounter time is roughly the same for all z values 

regardless of the parity of N, i.e., a decrease of the encounter time is observed (Figs. 3.9a and 

3.9b) . However, the qualitative p-dependence of (n} z in the large p limit becomes different 

for initial positions with even or odd values of dz : for even values of N and initial positions 

with odd dz i (n) z begins to increase sharply, as a result of which a minimum of the curve is 

observed (cf Fig. 3.9a) . Even though the contribution to the global efficiency (n} arising from 

the (N/2) — 1 sites with even dz decreases strongly in this regime, this effect is overcome by 

the increase of the contribution yielded by the N/2 sites with odd dz, thus giving rise to a net 

increase in (n} . In contrast, the sensitivity to the initial condition is less systematic and less 
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important for odd values of N (Fig. 3.9b) : again, a monotonic decrease is observed for even 

dz. Even though minima are still observed for dz = 1, for all other odd values of dz, they are 

either absent 7 or very flat (see curve for dz = 3 in Fig. 3.9b) . 

3.4 Monte Carlo results in two and three dimensions 

To complement the analytic ld results for the dependence of (n~ on the value of the pa-

rameter p, we have also investigated how (n~ depends on p for dimensions 2d and 3d using 

Monte Carlo simulations. Figures 3.10 and 3.11 show the dependence of (n~ with respect to 

p. As shown above for ld, there is distinctively different behavior based on whether N is 

even or odd. In higher dimensions this even-odd effect becomes much more pronounced. It is 

clear that when N is an even number, the maximal efficiency is attained at some intermediate 

value between 0 and 1. Also, one notices that for the 6 x 6 square lattice and for all 3d even 

lattices which we studied (n} ~°~ < (n~ ~1> . This is a surprising result which we do not see in 

the ld case for lattices with N > 4. This suggests the existence of a crossover effect in the 

large size limit when switching from 2d to 3d lattices, implying that in the former case the two 

simultaneously moving walkers are more effective than two asynchronous walkers, while in 3d 

the opposite holds. As in the ld case, the value of p,nin in 2d and 3d tends toward 1 in the 

limit of large lattice size, but it is interesting to note that in the largest 3d lattice which we 

studied (N = 1000), the difference between p = 0.999 and p = 1 is ~ 600, which is about 30% 

of (n) ~1~ in that case. This shows that for even lattices, a minute amount of asynchronicity 

allows for a much greater efficiency. Similar arguments to those given above for 1d exist for 

in 2d and 3d when attempting to determine why such even-odd behavior arises, and further 

analysis of this striking behavior is given in Ref. [27] . 

3.5 Comparison with continuum approximation 

It is instructive to compare the above results in ld with the continuum approximation 

valid for large N. To do so, consider the one-walker system with absorbing sites and a fixed 

?This is e.g. the case for N = 7 and dz = 3 (not shown here). 
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lattice length L = NOx, where Ox is the intersite distance (lattice constant). According to 

this definition, L is the distance between the inmost r-sites. The walker's distance to site 0 is 

x = z Ox. We perform the continuum limit by letting Ox and Ot simultaneously go to zero 

under the additional requirement that the diffusive combination (0x)2/Ot tend to a finite 

constant. Since L is fixed, this implies that one lets the number of sites N go to infinity while 

the spatial and temporal resolutions ~x and Ot axe scaled as 1/N and 1/N2, respectively. Let 

us next replace (n)z by a function (n)~ varying smoothly in the space interval [0, L]. The mean 

elapsed time (t)~ to absorption will then simply be the mean number of steps (n)~ times the 

time unit Ot. mom eq. (3.11), we have: 

4 ~~t)~+2ox — 2~t)~ + (t)~-2ox~ ~' 1 2 p L~t)~+o~ — 2~t)~ + (t)~—o~] + ~t = 0 (3.17) 

with the boundary conditions g 

~t~—Ox = ~t~x = ~t~L = ~t~L+Ox = O. ~3.IH~ 

We now divide eq. (3.17) by Ot and expand the expressions in the brackets in Ox. Taking the 

diffusive limit in the resulting equation yields 

D d2 ~t~~ _ —1, (3.19) 
dx2

where the relative diffusion coefficient D is given by 

z 

Ox,Ot—.0 ~t 
(3.20) 

In the rightmost equation, D~~~ is the value of the diffusion coefficient for p = 0. For p > 0, 

D~~~ is increased by the prefactor l +p, i.e., the vaxiance of the single-step probabilities of the 

random walk. In this limit, the four boundary conditions (3.18) coalesce into two distinct ones, 

namely (t)o = 0 and (t)L = 0. The solution of (3.19) which fulfils these boundaxy conditions is 

x(L—x) 
~t)~ = 2D

The spatially averaged reaction time ~t} is obtained by integrating over x: 

1 L L 2
~t~ L ,~ ~t~~ dx 

12D 0 
8In the case p = 0, one only has two boundary conditions, namely ~t} o = (t) L = 0. 

(3.21) 

(3.22) 
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As expected, (t) is proportional to the squared lattice length and inversely proportional to the 

relative diffusion coefficient D. For the special cases p = 0 and p = 1, this result is recovered 

by directly taking the diffusive limit in the discrete solutions (3.5) and (3.10). The relation 

(3.22) leads to the asymptotic law 

~t~ ~~~ = lim ~n~ ~~) = 1 + p> ~t~ N~~ ~n~ 
(3.23) 

where (t)~°> = L2/(12D~°~) and (n) is given by eq. (3.15). Eq. (3.23) shows that in the 

continuum limit, the efficiency of the reaction increases linearly with ~. The continuum ap-

proximation applies for sufficiently large N, namely when the typical displacement of the 

walker Dl = ~/1 -}- p 0~ at each time step is small compaxed to the lattice length NOx. If this 

condition is not fulfilled, the approximation gets significantly worse at large values of p (cf Fig. 

3.12). 

A generalization of (3.19) for higher order moments (t~)~ can be obtained by writing down 

the difference equations for the discrete quantities (n~)z and taking the diffusive limit thereof. 

One then gets the coupled set of equations 

D da ~t~+i~ ~ —

dx2 —~~ + 1~ ~t~~~, (3.24) 

Eqs. (3.24), not to be further dealt with here, axe well known from the theory of first-passage 

problems, where they are usually obtained from the adjoint Fokker-Planck equation for the 

underlying diffusion process [23, 28]. Again, deviations from the dynamics dictated by (3.24) 

are expected for small lattices. 

3.6 Conclusions and outlook 

We have seen that the ld problem of computing the mean reaction time between two 

diffusing co-reactants can be reduced to a trapping problem for a single walker. The latter can 

be viewed as a generalized ruin problem, the duration of the game plays thereby the role of 

the mean time to absorption. 

In the diffusive limit, equivalent to the limit N --~ oo if the lattice length L is held fixed, 

the reaction efficiency increases linearly with p, but important deviations are observed for not 
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too Large values of N. Beyond the crossover size N = 4, a new parity effect is observed. For 

odd values of N, the reaction time still increases monotonically (but no longer linearly) with 

p, while for even values of N, the efficiency is optimized for an intermediate value prnin < 1. 

In higher dimensions, this parity effect is even more pronounced, i.e. for even lattices there is 

a drastic increase in efficiency when a tiny amount of synchronicity is introduced. In contrast 

to the ld case, the effect is enhanced with increasing N. 

Let us briefly comment on the ld results from the perspective of the ruin problem. Assume 

that one of the gamblers is successively given an starting capital of 1, 2, . . . , N — 1 euros at 

each round, while his adversary gets N -- 1, N — 2, . . . ,1 euros. Let us further suppose that 

the gamblers can choose between two kinds of trials: the stake for the first one. is one euro and 

there is no tie. In the second trial, either nobody wins or one of the gamblers wins two euros. 

According to our results, for an odd capital N, the gamblers minimize the average playing time 

if they always make atwo-euro bet. However, if N is even, they should make a small amount 

of one-euro bets in order to finish the round as soon as possible. 

Our work can be .extended in many different ways. Perhaps the most straightforward one 

is the detailed characterization of the whole distribution P(n) in terms of p and N. 

A generalization of results such as equation (3.23) to higher dimensional integral and fractal 

lattices is also of interest, since it may further clarify the role of dimensionality and the lattice 

coordination number. According to our results, in one-dimension two synchronously moving 

walkers are asymptotically twice as efficient as when they hop one after the other. Ina 2d 

square planar lattice, Kozak et al. have shown that the purely synchronous case is ~ times 

more efficient than the purely asynchronous one in the large N limit for odd lattices [10] . 

The question is whether or not the relative efficiency of both processes in lattices with fractal 

dimension 1 < df < 2 lies between 2 and ~. Preliminary calculations on a Sierpinski gasket 

(with fractal dimension df = 1.585) seem to indicate an asymptotic relative efficiency higher 

than 2 in this case, despite the fact that the lattice has (up to the three vertex sites) the 

same coordination number as a 2d square planar lattice [27] . The reason for this may be the 

important role played by the specific form of the lattice boundaries, even in the limit of a 
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large lattice. This may motivate the study of boundary conditions other than periodic ones for 

the two-walker system. However, the analytical treatment of this case is considerably harder, 

at least in the framework of the method of difference equations, since the lattice is no longer 

translationally invariant. 

As a further extension of our work, one can also consider more complex reactive schemes [29~ 

involving more than two walkers to study the combined effect of synchronicity and many-body 

effects. 
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CHAPTER 4. General conclusions 

4.1 General discussion 

In this work, results, both analytic and numerical, on the role of boundary effects and of 

geometric factors such as size, dimensionality, and topological invariants on the efficiency of 

encounter-controlled reactions have been obtained. Values for the mean walklengths (n} 1 and 

(n~ 2 for the 1 WT and the 2W case as well as the relative efficiency I, have been computed 

both for large lattices and small size systems. 

The relevance of considering in detail systems of restricted spatial extent is increasing, as 

it is nowadays realized that heterogenous catalytic processes of great importance take place 

on single crystallographic faces of solid catalysts where they can involve, only a few tens of 

particles. Despite the fact that the numerical values obtained in this work for small systems 

are not universal, some universal trends of a different kind have nevertheless been observed, 

e.g. the dependence. (increasing, monotonic, etc.) of I' on valency, connectivity and boundary 

conditions. In general, one has I' > 1, implying that the reactive efficiency of two moving 

reactants is greater than a diffusing plus an immobile one. 

Turning now to large-size systems, our results show that I' increases with increasing lattice 

size until it reaches awell-defined limiting value I,~ . For a given lattice geometry, this value 

decreases with increasing dimensionality. With the exception of the even cubic lattice, I'~ > 1. 

For Euclidean lattices of square-planar or cubic symmetry and subject to periodic boundary 

conditions the value of I'~d is exactly 2 and ~ in ones and two dimensions respectively, and 

about 1.22 in three dimensions. One is tempted to advance that this last number is actually 

lIn the diffusive limit, it can be shown that the diffusion coefficient for the relative motion of both reactants 
is twice as large in the 2W case [30] . Discrepancies from this value for small systems are due to the discreteness 
of the lattice. Possibly similar arguments hold in higher dimensions. 
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within the precision afforded by the simulations just ~(3/2) . Now, 1, ~ and ~ are the 

natural metrics of the lattices here considered in, respectively, 1, 2 and 3 dimensions. The 

results for rid  could then be particular cases of a universal expression: the ratio of the 

maximum distance that two simultaneously moving reactants can traverse in one time unit 

before they react or find themselves in nearest neighbor positions, over the analogous quantity 

for the one reactant plus trap case. Further work is necessary to assert the validity of this 

conjecture and to understand why it manifests itself only for odd lattices. 

For a given system size, the 1WT and the 2W reaction efficiency becomes less efficient when 

confinement is introduced, but the decrease in efficiency is smaller for the 2W case, leading 

to an increased value of I, with respect to the periodic case. This boundary effect appears to 

become less significant with increasing system size, although it is not completely absent in the 

thermodynamic limit. 

The questions raised in this work and the results obtained constitute potentially useful 

elements in the important problem of optimal design of the microreactors nowadays involved 

in chemical kinetics under nanoscale conditions. For instance, as seen in Chapter 2, a small 

catalytic surface in the form of a sphere or of a hexahedral surface homeomorphic to it (x = 2) 

would enhance the reaction efficiency as compared to a surface homeomorphic to a torus 

(x = 0) . These observations highlight the need to incorporate in the design such aspects as 

the geometry of the microreactor, which can enhance an increasingly effective mixing of the 

reactants and hence an increased efficiency of the reaction itself. Finally, the role of the kinetics 

(linear vs. nonlinear) in modulating or enhancing the importance of such factors is certainly a 

problem worth addressing. 

We have seen that the ld problem of computing the mean reaction time between two 

diffusing co-reactants can be reduced to a trapping problem for a single walker. The latter can 

be viewed as a generalized ruin problem, the duration of the game plays thereby the role of 

the mean time to absorption. 

In the difl"usive limit, equivalent to the limit N -~ oo if the lattice length L is held fixed, 

the reaction efficiency increases linearly with p, but important deviations are observed for not 
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too large values of N. Beyond the crossover size N = 4, a new parity effect is observed. For 

odd values of N, the reaction time still increases monotonically (but no longer linearly) with 

p, while for even values of N, the efficiency is optimized for an intermediate value pmZn < 1. 

In higher dimensions, this parity effect is even more pronounced, i.e. for even lattices there is 

a drastic increase in efficiency when a tiny amount of synchronicity is introduced. . In contrast 

to the ld case, the effect is enhanced with increasing N. 

A generalization of results such as equation {3.23) to higher dimensional integral and fractal 

lattices is also of interest, since it may further clarify the role of dimensionality and the lattice 

coordination number.. According to our results, in one-dimension two synchronously moving 

walkers are asymptotically twice as efficient as when they hop one after the other. Ina 2d 

square planar lattice, Kozak et al. have shown that the purely synchronous case is ~ times 

more efficient than the purely asynchronous one in the large N limit for odd lattices [12] . 

The question is whether or not the relative efficiency of both processes in lattices with fractal 

dimension 1 < df < 2 lies between 2 and ~. Preliminary calculations on a Sierpinski gasket 

(with fractal dimension df = 1.585) seem to indicate an asymptotic relative efficiency higher 

than 2 in this case, despite the fact that the lattice has (up to the three vertex sites) the 

same coordination number as a 2d square planar lattice [31] . The reason for this may be the 

important role played by the specific form of the lattice boundaries, even in the limit of a 

large lattice. This may motivate the study of boundary conditions other than periodic ones for 

the two-walker system. However, the. analytical treatment of this case is considerably harder, 

at least in the framework of the method of difference equations, since the lattice is no longer 

translationally invariant. 

4.2 Future research 

As a further extension of our work, one can also consider more complex reactive schemes [32] 

involving more than two walkers to study the combined effect of synchronicity and many-body 

effects. Other avenues for further research concern revisiting the 1 WT and 2W reaction schemes 

and adding further conditions to the transitions of the reactants. In the work presented thus 
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far, the transition probabilities were dependent only on the geometry of the lattice and number 

of nearest neighbor sites.2 One could apply some electrostatic potential to the reactants which 

would allow the study of long-range interactions. One can also consider more complicated 

reaction schemes which involve more than two reactants and which may have more than one 

reaction pathway. For example, one could formulate the geometry in such a way as to have 

immobile catalyst sites as well as mobile reactants. This study has already begun and some 

preliminary results have been reported (32]. 

2In the synchronous vs. asynchronous work there was anon-zero probability for a reactant to remain sta-
tionery at a particular time step, but when the reactant did finally make a jump, the transition probability was 
still defined exclusively by the number of allowable nearest neighbor sites available. 
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APPENDIX One Dimensional Example 

Consider a ld lattice with periodic boundary conditions. The problem of the random walker 

and a single trap can be solved for an exact expression at least three different ways. Montroll 

solved the problem through the use of generating functions [ll]. Two other methods will be 

outlined in more detail below and can also be seen in ref. [33]. 

is 

Difference equation method 

One method is through the use of difference equations. Recall that the expression to solve 

N-1 

~n) = N 1 1 ~ ~n)z, 
z=i 

where the factor of N —1 in the denominator is present to avoid over-counting the lattice sites 

since site N is the trap, and z denotes the index of the lattice site. The difference equation 

one must solve is the following, 

(n)z = 2 (n)z+l + 2 (n)z- 1 -}-1, 0 < z < N, (n)o = (n~nr = 0, (A.2) 

where the addition of unity is included because the walklength should be incremented by 1 with 

each time step. Multiplication by the constant factor 2 and rearrangement puts the equation 

in a more useful form 

(A.3) 

The theory of inhomogeneous, second-order linear difference equations with constant coe$i-

cients specifies that the solution will be composed of the solution to the homogeneous difference 

equation and the particular solution [34]. Upon inspection, the characteristic equation is 
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which has a double root at m = 1. Since there is a double root, the solution to the homogeneous 

equation has the form 
(z)zom. = Clmz -`- C2zmz 

and since the double root is 1 the expression is 

(A.5) 

(A.6) 

If the inhomogeneous term is of the form A(b)z, then the particular solution will be of the form 

Ao(b)z. Since the inhomogeneous term in this case is —2(1)z, the particular solution should be 

Ao(1)x. But since (1)z and z(1)z are already part of the solution to the homogeneous equation, 

the correct particular solution is Aoz2(1)z. To determine Ao, we substitute the particular 

solution into Eq. (A.3) for (n)z which yields 

Ao(z + 1)2 — 2Aoz2 + Ao(z — 1)2 = —2. (A.7) 

After performing the algebra and some cancellations, one finds that Ao = —1. The full solution 

is now 

~A.s~ 

To determine the constants it is necessary to utilize the boundary conditions with Eq. (A.8). 

This becomes the two-equation system 

~n)o = 0 = Cl (A.9) 

(n)N = 0 = Cl + C2N —1~r2. (A.10) 

Upon evaluation of the constants, the full expression is 

Now substituting Eq. (A.11) into Eq. (A.1) yields 
1 N-1 

~n~ N — 1 
z=1 

where the summation is evaluated analytically as 
N-1 N(N + 1)(N — 1) 

z=1 

~a.ii) 
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Performing the division by N — 1 finally gives the expression for the mean walklength 

~ ~ _ N(N + 1) 
n  6 

Markov transition matrix method 

(A.14) 

Another method used to solve the mean walklength problem is through the so-called Markov 

method [27, 29] . This involves constructing a probability matrix and inverting the matrix to 

yield all the individual walklengths from each symmetry distinct site, and then summing them 

up to form the overall walklength. Consider as an example Fig. A.1, a 5-site ld chain with 

Figure A.l One dimensional 5-site lattice, with the sites in the circles denot-
ing the lattice sites and the dashed boxes denoting the connec-
tivity of the terminal sites due to the periodicity of the lattice. 

periodic boundary conditions and a deep trap. With this figure in mind one constructs the 

probability matrix P which describes all the probabilities of movement for a random walker. 

Each element PZ~ describes the probability of a walker on site i moving to site ,j in the next 

time step. The probability matrix in this case is 

P = 

1 0 0 0 0 

1/2 0 1/2 0 0 

0 1/2 0 1/2 0 

0 0 1/2 0 1/2 

1/2 0 0 1/2 0 

P can be decomposed into 4 blocks as 

P = 
L 0 

R Q 

(A.15) 

(A.16) 

In this decomposition, L describes the ergodic or equilibrium state, R describes the transitions 

from the transient states to the ergodic states, and Q describes all the transitions between 
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transient states. The appropriate partitioning of P is 

1/2 

z = ~i~, 

and 

4 

0 

0 

1/2 

o=[o 0 0 0] , 

o i/z o 0 

1/2 0 1/2 0 

0 1/2 0 1/2 

0 0 1/2 0 

(A.17) 

Once Q is specified, the theory of Markov chains shows that matrix N = (I — Q)-1 (called the 

fundamental matrix) can be computed and from it the walklength data can be extracted. In 

this particular example N is 

8/5 6/5 4/5 2/5 

N  _ 6/5 12/5 8/5 4/5 
(A.19) 

4/5 8/5 12/5 6/5 

2/5 4/5 6/5 8/5 

The elements N~~ denote average site visitation values, that is, for a walker starting at site i, 

it will visit site j an average of N2~ times before being trapped irreversibly. This leads to the 

fact that the sum of any particular row i of the matrix N gives the average lifetime of a walker 

starting from site i and ultimately terminating the walk at the trap. Formally speaking this 

is expressed as 

In this particular example we have 

(~) 

(A.20) 
.7 

= 4, (n)2 = 6, (n)3 = 6, (n)4 = 4, (A.21) 

for the walklengths from each individual site and 

(n) = 4 {(n)1 + (n)z + (n)3 -I- (n)4} = 5, (A.22) 
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for the overall average walklength. This result is corroborated with the result which is cal-

culated using Eq. (A.14) when N = 5.3 Recall from Chapter 1.1 that the inverse of the 

smallest eigenvalue of G is related to the mean walklength as well (Eq. (1.10)]. This provides 

an independent check on our results. In our context here, G is given by 

G=I —Q= 

The eigenvalues of G are 

i -i/2 0 0 
—1/2 1 —1/2 0 

0 —1/2 1 —1/2 

0 0 —1~2 1 

~ = 3 _ 151/2 
1 4 4 

~ = 3 + 1512 
2 4 4 

~ = 5 _ 151/2 
3 4 4 

~ _ 5 151/2 
4 4

+4

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

and ~i 1 ^~ 5.236, which agrees quite nicely with our earlier result of 5 which we already 

obtained from both methods. 

Notice that this particular solution of the Markov~ transition matrix does not give a general 

solution as does the method of generating functions and the method of difference equations. 

It only gives a particular solution to a case on a finite lattice with well-defined walker and 

boundary conditions. The general solution can be determined by recognizing patterns in the 

mean walklength values of the first few small lattices. 

The power of the Markov transition matrix method is apparent when dealing with dimen-

sions higher than 1. Constructing the transition matrix in higher dimensions and solving for 

the site-individual and overall mean walklengths poses no new theoretical or mathematical 

problems. While exact analytic solutions may not be possible in higher dimensions, the nu-

merical results provided by Markov theory still yield a great deal of information about the 

particular system in question. The methods of difference equations and generating functions 

3In this example case there are 5 sites on the lattice. There are 4 transient sites and 1 deep trap. 
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are not easily solved in dimensions higher than 1 and for that reason they provide elegant 

solutions in 1 d but in higher dimensions are not as helpful. 



www.manaraa.com

65 

REFERENCES 

[1] A.V. Barzykin, K. Seki, M. Tachiya, Adv. Coll. Inter. Sci. 89-90 (2001) 47. 

[2] E.V. Albano, Heterog. Chem. Rev. 3 (1996) 389. 

[3] V.P. Zhdanov, Elementary Physicochemical Processes on Surfaces, Plenum, New 

York (1991). 

[4] N. Pavlenko, J.W. Evans, D.-J. Liu, R. Imbihl, Phys. Rev. E 65 (2001) 016121. 

[5] S. Rice, Dif~'usion Limited Reactions, Elsevier Press, Amsterdam (1985). 

[6] Z. Racz, Phys. Rev. Lett. 55 (1985) 1707. 

[7] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd 

Edition, Wiley, New York, 1968. 

[8~ R. Dickman in: V. Privman (Ed.), Nonequilibrium Statistical Mechanics in One 

Dimension, Cambridge University Press, Cambridge, 1997. 

[9] E.E. Fauman, R. Kopelman, Mol. Cell. Biophys. 6 (1989) 47. 

[10] M.E. Fisher, J. Stat. Phys. 53 (1988) 175. 

[ll] E.W. Montroll, J. Math. Phys. 10 (1969) 753. 

[12] J.J. Kozak, C. Nicolis, G. Nicolis, J. Chem. Phys. 113 (2000) 8168. 

[13] G.H. Weiss, J. Stat. Phys. 15 (1976) 157. 

[14J J.B.T.M. Roerdinck, K.E. Shuler, J. Stat. Phys. 40 (1985) 205; J. Stat. Phys. 

41 (1985) 581. 



www.manaraa.com

66 

[15] C. van den Broeck, Drunks, Drift and Diffusion, Master thesis, Vrije Universiteit 

Brussels, Brussels, 1988. 

[l6~ A. Gandjbakhche, R. Nossal, R.F. Bonner, J. Stat. Phys. 69 (1992) 35. 

[17J J. Noolandi, Phys. Rev. B 16 (1977) 4466. 

[18] G. Pfister, H. Scher, Adv. Phys. 27 (1978) 747. 

[19J F.W. Schmidlin, Phys. Rev. B 16 (1977) 2362. 

[20] O. Benichou, B. Gaveau, M. Moreau, Phys. Rev. E 59 (1999) 103. 

[21J R. Elber, M. Karplus, J. Am. Chem. Soc. 112 (1990) 9161. 

[22] M. 'Ititckerman, K. Laasonen, M. Sprik, M. Parinello, J. Chem. Phys. 103 (1995) 

150. 

[23J J. Whitmarsh and Govindjee in Concepts in Photobiology: Photosynthesis and 

Photomorphogenesis, ed. by G.S. Singhal, G. Renger, S.K. Sopory, K-D. Irrgang 

and Govindjee, Narosa Publishers, New Delhi and Kluwer Academic, Dordrecht, 

1999. 

[24] R. van Grondelle and J. Amesz in Light Emission by Plants and Bacteria, ed. 

by Govindjee, J. Amesz and D.C. Fork, Kluwer Academic, Netherlands, 1986. 

[25] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-

Holland, Elsevier Science Publishers B.V., Amsterdam, 1992. 

[26] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems, John Wi-

ley &Sons, New York, 1977. 

[27] J.J. Kozak, Adv. Chem. Phys. 115 (2000) 245. 

[28] G.H. Weiss, Aspects and applications of the random walk, North-Holland, Else-

vier Science B.V., Amsterdam, 1994. 



www.manaraa.com

s7 

[29] J.G. Kemeny, J.L. Snell, Finite Markov chains, Springer-Verlag, New York, 1976. 

[30~ E. Abad, G. Nicolis, J.L. Bentz, J.J. Kozak, Physica A 326/1-2 (2003) 69. 

[31] J.L. Bentz, J.J. Kozak, E. Abad, G. Nicolis, Physica A 326/1-2 (2003) 55. 

[32] C. Nicolis, J.J. Kozak, G. Nicolis, J. Chem. Phys. 115 (2001) 663. 

[33] E. Abad, Aspects of Nonlinear Dynamics in Low Dimensional Lattices: a Mul-

tilevel Approach, PhD Thesis, Universite Libre de Bruxelles, Brussels, 2003. 

[34] S. Goldberg, Introduction to Difference Equations, John Wiley &Sons, Inc., 

New York, 1958. 



www.manaraa.com

68 

.ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my thanks to those who helped me with 

various aspects of conducting research and the writing of this thesis. First and foremost, 

Dr. John J. Kozak for his guidance, patience, and support throughout this research and the 

writing of this thesis. I would also like to thank my committee members for their efforts and 

contributions to this work: Dr. Jim Evans, Dr. Xueyu Song, Dr. Gerald Small, and Dr. Mark 

Gordon. 

I would like to thank Dr. Gregoire Nicolis for his kindness and unique insights in our 

work together. Thanks are also in order to Dr. Enrique Abad (who just received his PhD), 

my principal graduate student collaborator, for his time and willingness to be a teacher to 

me. Thank you as well to another fellow graduate student collaborator Fatemeh Niroomand 

Hosseini, who performed some very tedious calculations in our work together. 

I would like to thank the Department of Chemistry ofFice staff for helping me fill out the 

proper paperwork and meet all the deadlines. 

Lastly, I thank my family for their support, and a special thanks to my wife Jennifer, who 

has supported me throughout my graduate education and because of her unselfishness, has 

allowed me to pursue my academic and personal goals vigorously. 


	Topological and synchronicity effects in reaction efficiency
	Recommended Citation

	Topological and synchronicity effects in reaction efficiency

